TOPIC 1

What is Problem?

- A Problem is a state of difficulty that need to be resolved

What is Algorithm?

- Aset of precise steps that describe exactly the tasks to be performed and the order
in which they are to be carried out.
- Pseudocode, Flowcharts

Steps to developing a Program
* Define
* Define the problem.
* Outline
* Qutline the solution.
* Develop
* Develop the outline into an algorithm.
* Test
» Test the algorithm for correctness.
* Code
* Code the algorithm into a specific programming language.
* Run
* Runthe program on the computer.
* Document and maintain

* Document and maintain the program.

What is Pseudo Code?

- Itis English that has been formalized and abbreviated to look like the high-level
computer languages.

- START, END,IF,ELSEIF, PRINT, DISPLAY , SHOW , OUTPUT, PUT

- Sample keyword for repetition:

- FOR

- WHILE / ENDWHILE

- REPEAT/ UNTIL

- DO/WHILE/ENDWHILE

Example:

‘”IF student_attendance_status is part_time THEN
add 1 to part_time_count

ELSE
add 1 to full_time_count

ENDIF **”

FLOWCHART
* Flowchartis generally drawn from top to bottom
* Allboxes of flowchart must be connected with arrow.
* Allboxes of flowchart must be connected with arrow.

 All boxes of flowchart must be connected with arrow.

- TERMINAL (START OREND)

- INPUT/OUTPUT

D -Process (calculation)

-Decision (IF Statements)

-Predefined process

-On-page Connector

-FLOW (DIRECTION)

TOPIC -2

Types of Operators
Operators Type
+=1.%% ~ Arithmetic Operators
: ==, I=,5, ¢, <=, = ‘ Comparison Operators j
&&, (n),! ~ Logical Operators
=,+=,-3,%=,[=,%= Assignment Operators
| P - . Increment and Decrement Operators
| &, |, A~ 23, < ’ Bitwise Operators

Relational Operators

> Greater than
»= Greater than or equal
< Less than
&= Less than or equal
== Equal
I= Mot equal

Logical Operators

B & AND Mew relational expression is true if both expressions
are true
Il OR Mew relational expression is true if either expression
is true

| WNOT Reverses the value of an expression — true
expression becomes false, and false becomes true

Types of Selection

1. Simple Selection (simple IF)

2. Simple Selection with NULL FALSE

3. Combine Selection (combined IF)

4. Nested Selection (Linear and Non-Linear)

Simple Selection

- Simple selection uses a straightforward 1+ statement to make a decision based on a
condition.

IF temperature > 38 THEN
PRINT "It's hot outside.™

END IF

Simple Selection with NULL FALSE

- Insome programming languages or contexts, you might check for null values
explicitly to handle cases where data might be missing or undefined.

IF userName IS NOT NULL AND userName = "John™ THEN
PRINT "Hello, Johmn!™
END IF

Combine Selection (combined IF)

- Combine selection uses logical operators to check multiple conditions in a single 1
statement.

IF age >= 18 AND hasID = TRUE THEN

PRINT "You are eligible to vote."
END IF

Nested Selection (Linear and Non-Linear)

Nested selection involves placing one 1r statement inside another. This can be linear (one
inside another) or non-linear (multiple branches).

Linear Nested

True (Condition_1)

(Condition_2) False
| Action_2 I (Condmon 3)
T'E‘Fase

[[reions]

A

IF weather = "“rainy™ THEN
IF temperature < 15 THEN

PRINT "It's a cold rainy day."
END IF
END IF

- If one condition is not correct, will directly go to another
condition.

Non-linear Nested

@m - There is other processes between the conditions
selections.

Y
Read itemName,
tagcolor, price

tagcolor ==
“red”

True

False

False
price > s—>|
100.00

nettprice = price

tax =10%

A

nettprice = price - tax

Print
itemName,
nettprice

IF score »= 98 THEN
PRINT "Grade: A"
IF extraCredit > @ THEN
PRINT "With extra credit."
ELSE
PRINT “Without extra credit.”
END IF
ELSE

PRINT "Grade: B"
END IF

Repetition

- For Loop
- While Loop
- Do While Loop (Known as Post test loop)

2 Types of LOOP

- Pre-test lopp
- Posttest loop (Use in C, C#,]Java)

Repetition Structure

 1.Can be used to control execution of the loop (loop control
variable)

 2.ltwillincrement or decrement each time a loop repeats

e 3.Must be initialized before entering loop

For Loop

- Aforloop in Python is typically used when the number of iterations is known
beforehand.

- The for loop in Python is often used to iterate over a sequence
(like a list, tuple, string, or range).

- The loop control variable is automatically managed by the loop
structure.

print(

While Loop

- Awhile loop is used when the number of iterations is not known beforehand and
depends on a condition.

- The while loop in Python continues to execute as long as the condition is True.

- The loop control variable must be explicitly managed (initialized, condition-

checked, and updated) by the programmer.

user_input =
user_input !=

user_input = input(

print(, user_input)

TOPIC -3

What is Programming Language?

- lIs asetofrules that provides a way of telling a computer what
operations to perform.

- It provides a linguistic framework for describing computations

- Is anotational system for describing computationin a
machine-readable and human-readable form.

- lIsatoolfordeveloping executable models for a class of
problem domains.

e Source Code: The entire block of code from variable initialization to
the i f-e1se Statement and the print functions.

e Syntax: The if-e1se statement syntax is correct because it includes a
colon after the condition and proper indentation.

e Output: Depending on the values of a and b, the output will be either
"The result is: 30" or "a is not less than b".

e Console: The text box (within the IDE or terminal) where the output

"The result is: 30" will be printed.

 easy to learn,

« relatively fast,
 object-oriented,
« strongly typed,

» widely used, and
 portable.

Free

Portable
Indentation
Object-Oriented

Powerful

» Cis much faster but much
harder to use.

« Java is about as fast and
slightly harder to use.

« Perl is slower, is as easy to
use, but is not strongly
typed.

PYTHON is Interpreting Language.

Difference Between Compiling and Interpreting

platforms.

Aspect [Compiling Interpreting

Translation Translates entire source code into Translates and executes source
machine code before execution. code line by line.

Output Generates an executable file No intermediate file, directly
(e.g., .exe). executes source code.

Execution Generally faster, as machine code is Generally slower, as translation

Speed executed directly by the processor. happens during execution.

Platform Platform-specific executables; may Platform-independent; requires an

Dependency require recompilation for different interpreter on the target machine.

Development
Cycle

Requires compilation step before
execution; slower iteration during
development.

Direct execution; faster iteration
and easier testing during
development.

Distribution

Distribute executable files; source
code can remain hidden.

Source code is distributed and
executed by the interpreter.

Error Detection

Errors are detected at compile time.

Errors are detected at runtime.

Examples

C, C++, Rust

Python, JavaScript, Ruby

Comment in Python

_ USG “#”

€

TOPIC 4 (Implementing PYTHON)

*** REMEMBER the DATA TYPES

Type Declaration Example Usage
Integer int x = 124 Numbers without decimal point
Float float X = 124.56 Numbers with decimcal point
String str x = "Hello world" Used for text
Boolean bool X = True or X = False Used for conditional statements
NoneType None X = None Whenever you want an empty variable

Variable Declaration Rules

1. Variable Names Must Start with a Letter or an Underscore

2. Variable Names Can Only Contain Alphanumeric Characters and
Underscores

user_name

userl23 =

3. Variable Names Cannot Be a Reserved Keyword

I I e I
o Y)
2 T K

class finally

global

4. Variable Names Should Be Descriptive

student age =

Order Precedence Rules

Parenthesis

Power

Multiplication / division/
Modulus

Addition

Left to Right

Boolean Value

- YESORNO
- True or False

Decision Structures in Python with Examples

1. One Way Decision (if)

Executes a block of code if the condition is true

2. Two-Way Decision (if else)

Executes one block of code if the condition is true and another block if the condition is false.

3. Multiway Decision (if elif)

Executes one of several blocks of code depending on multiple conditions.

SCore =

sCcore »=

print(

sCore »=
print(
sSCore »>=

print(

print(

Pass Statement

A placeholder statement that does nothing; used when a statement is required syntactically but no
action is needed.

No output because pass does nothing

Return Statement

Exits a function and optionally passes an expression back to the caller.

result = check age(21)
print(result)

break Statement
The break statement is used to exit a loop prematurely. When break is encountered inside a

loop, the loop is terminated, and control is transferred to the statement immediately following the
loop.

range(10):

N == 53

print{i)

continue Statement

The continue Statement is used to skip the current iteration of a
loop and proceed to the next iteration. When continue is
encountered, the remaining code inside the loop is skipped, and
the next iteration begins.

print(i)

Explanation of range (start, stop, step).
start: The starting value of the sequence (inclusive).
stop: The stopping value of the sequence (exclusive).

step: The step value determines the increment (or decrement if negative).

Using else Statement with While Loop — Example
count=0
while count < 5:

print(count, " is less than 5")

count = count + 1

else:

print(count, " is not less than 5")

Chapter — 7
Functions

- Afunctionin Pythonis a block of reusable code that performs a specific task.

Using “def” to create a function

Arguments and Parameters:

Parameter: A variable in a function definition. It is a placeholder for the value that
will be passed to the function when it is called.

Argument: The actual value or expression passed to a function when calling it.

Pass by Reference and Pass by Value:
Pass by reference: When you pass a mutable object (like a list or dictionary) to a function,

the function can modify the object.

(1st):
1st.append(4)

numbers = [1, 2, 3]

modify_list(numbers)

print(numbers) # Output

Pass by value: When you pass immutable objects (like integers, strings, tuples) to a
function, a copy of the object is passed. Changes inside the function do not affect the
original object.

increment(x)

print({x) # Output

Fruitful (Return Values) and Void (Non-fruitful) Functions:

Fruitful Function: A function that returns a value using the return statement.

(a, b):

a+b

result = add numbers(z, 5)

print{result) # Output

Void Function (Non-fruitful): A function that performs an operation but does not return any
value explicitly (implicitly returns none).

***Python Built-in Functions to Remember

e print(): Outputs messages or variables to the console.

e len(): Returns the length (number of items) of an object like a string, list, or tuple.

e input(): Reads input from the user via the console.

e type (): Returns the type of an object (e.g., int, str, 1ist).

e int(): Converts a string or number to an integer.

e float(): Converts a string or number to a floating-point number.

e str(): Converts an object into a string representation.

e list(): Creates a list from iterable objects like tuples or converts a string to a list.

e tuple (): Creates a tuple from iterable objects or converts a list to a tuple.

e dict(): Creates a dictionary or converts a sequence of key-value pairs into a dictionary.
e range (): Generates a sequence of numbers.

e sorted(): Returns a new sorted list from the elements of any iterable.

e sum(): Returns the sum of all elements in an iterable.

e max () : Returns the maximum element from an iterable or a series of arguments.

¢ min (): Returns the minimum element from an iterable or a series of arguments.

e abs(): Returns the absolute value of a number.

e all(): Returns true if all elements of an iterable are true (or if the iterable is empty).

e any(): Returns true if any element of an iterable is true. If the iterable is empty, it returns
False.

e callable(): Checks if the object is callable (e.g., functions, methods).

* enumerate (): Returns an enumerate object that yields tuples containing a count (index) and
the values obtained from iterating over a sequence.

e filter (): Constructs an iterator from elements of an iterable for which a function returns
true.

e map () : Applies a function to all items in an input iterable.

e zip(): Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of
the input iterables.

e chr(): Returns the string representing a character whose Unicode code point is the integer.
e ord(): Returns the Unicode code point for a given character.

¢ round(): Rounds a floating-point number to a specified number of decimals or to the nearest
integer.

e dir(): Returns a list of attributes and methods of any object (without the methods).
e eval(): Evaluates a string containing a Python expression.

e globals (): Returns the dictionary representing the current global symbol table.

e locals(): Returns the dictionary representing the current local symbol table.
append () : Adds an element to the end of a list.

pop () . Removes and returns the last element from a list, or removes and returns the element at a
specified index.

insert(): Inserts an element at a specified position in a list.

index () : Returns the index of the first occurrence of a value in a list.

Capitalizes first letter of string

nter{width, fillchar)

Returns a space-padded string with the original string centered to a total of width
columns

count(str, beg= 0,end=len(string))

Counts how many times str occurs in string, or in a substring of string if starting
index beg and ending index end are given

decode({encoding="UTF-8'errors='strict’)

Decodes the string using the codec registered for encoding. encoding defaults to the
default string encoding.

encode(encoding="UTF-8',errors="strict')

Returns encoded string version of string; on error, default is to raise a ValueError
unless errors is given with 'ignore' or 'replace’'.
endswith(suffix, beg=0, end=len(string})

Determines if string or a substring of string (if starting index beg and ending index
end are given) ends with suffix; Returns true if so, and false otherwise

expandtabs(tabsize=8)

Expands tabs in string to multiple spaces; defaults to 8 spaces per tab if tabsize not
provided

10

11

12

13

14

g=0 end=len(string}}

Determine if str occurs in string, or in a substring of string if starting index be
ending index end are given; returns index if found and -1 otherwise

index(str, beg=0, end=len(string})

Same as find(), but raises an exception if str not found
isalnumi)

Returns true if string has at least 1 character and all characters are alphanume
and false otherwise

isalphal)

Returns true if string has at least 1 character and all characters are alphabetic
false otherwise

isdigit()
Returns true if string contains only digits and false otherwise

r()

4]

islow

Returns true if string has at least 1 cased character and all cased characters ai
lowercase and false otherwise

snumeric()

Returns true if a unicode string contains only numeric characters and false oth

Returns true if string contains only whitespace characters and false otherwise

16

17

18

19

20

21

22

23

Returns true if string is properly "titlecased" and false otherwise

isupper()

Returns true if string has at least one cased character and all cased characters are in
uppercase and false otherwise

join{seq)

Merges (concatenates) the string representations of elements in sequence seq into a
string, with separator string

Returns the length of the string

just{width[, fillchar])

Returns a space-padded string with the original string left-justified to a total of width
columns

Converts all uppercase letters in string to lowercase
Removes all leading whitespace in string

maketrans()

Returns a translation table to be used in translate function.
max(str)

Returns the max alphabetical character from the string str

33

34

35

36

37

38

39

Determines if string or a substring of string (if starting index beg and ending index
end are given) starts with substring str; Returns true if so, and false otherwise

strip([chars])

Performs both Istrip() and rstrip() on string

swapcase()

Inverts case for all letters in string

Returns "titlecased" version of string, that is, all words begin with uppercase, and the
rest are lowercase
translate(table, deletechars

Translates string according to translation table str(256 chars), removing those in the
del string

upper()
Converts lowercase letters in string to uppercase
zfill {width)

Returns original string leftpadded with zeros to a total of width characters; intended
for numbers, zfill() retains any sign given (less one zero)
isdecimall(}

Returns true if a unicode string contains only decimal characters and false otherwise

25

20

27

28

29

30

31

Returns the min alphabetical character from the string str

replace(old, new [, max])

Replaces all occurrences of old in string with new, or at most max occurrences if
given

rfind(str, beg=0,end=len(string))

Same as find(), but search backwards in string

index(str, beg=0, end=len(string))

Same as index(), but search backwards in string

riust{width,[, fillchar])

Returns a space-padded string with the original string right-justified to a total of
width columns.

rstrip()
Removes all trailing whitespace of string

split{str="", num=string.count(str]))

Splits string according to delimiter str (space if not provided) and returns list of
substrings; split into at most num substrings if given

splitlines{ num=string.count(\n'))

Splits string at all (or num) NEWLINEs and returns a list of each line with NEWL}
removed

Chapter (Stings Slicing)

Indexing

Strings in Python are indexed, meaning each character in the string has a position, starting from o
for the first character. Negative indices count from the end of the string.

my string =

print(my string[©])
print(my_string[-1])

Slicing

Slicing allows you to extract a substring (a portion of the string) from a string by specifying a
range of indices. The syntax for slicing is string[start:end:step].

my string =
print(my string[7:])
print(my string[:5])
print(my_ string|

o All characters but the last
slice = myString[:-1] = © O

The in Operator:

The in operator checks for membership, whether a value exists within an iterable (like
strings, lists, tuples, etc.).

my_string =
my string:

print(

print(

*** Remember this functions()

5
!
b
X
IEﬁl:

abc abc

.lower ()

"abc abc".replace("c ", "xx")

"abc abc".startswith("ab")

"AbC aBc".swapcase()

NNV NN N
H
:
D

"Abc abc".upper ()

abc abc".capitalize () - Abc abc

"abc abc".count ("b") 2 2

"abc abc".islower () -2 True

>>> greet =" Hello Bob

>>> greet.lstrip ()
"Hello Bob '

>>> greet.rstrip()
' Hello Bob'

>>> greet.strip/()
"Hello Bob'

>>2>

Strings cannot be modified; instead, create a new one.

>>> g = "GATTACA"

>>> s[3] = "C"

Traceback (most recent call last):
File "<stdin>", line 1, in ?

TvpeError: object doesn't support item assignment
>>> g = s[:3] + "C" 4+ s[4:]

>>> s

'"GATCACA'

>>> 5 = s.replace("G","U")

>>> 5

'"UATCACA'

String Formatting Methods:

String formatting in Python allows you to insert values into strings in a controlled manner. There
are several ways to format strings, but here we focus on the format () method and f-strings
(formatted string literals).

name =

age =

message = .format(name, age)

print(message)

.format (name= » balance=

F-strings Format

name =
age =

message =

print{message)

Chapter — 9 (lists and tuples)

LIST

Syntax for Llist is slightly different
comparing with tuple

type(Weekdays)
class<'lists™>

List uses [and] (square brackets) to
bind the elements.

List can be edited once it is created in

python. Lists are mutable data
structure.
More methods or functions are

associated with lists.

TUPLE

Order is maintained.

They are immutable

They can hold any type, and types can

be mixed.

Elements are accessed via numeric

(zero based) indices

There is a difference in syntax and

looks easy to define tuple

TUPLE

Syntax for tuple is slightly different

comparing with lists

class<'tuple™

Tuple uses rounded brackets(and) to bind
the elements.

A tuple is a list which one cannot edit once
it is created in Python code. The tuple is an
immutable data structure

Compare to lists tuples have Less methods
or functions.

DICTIONARY

Ordering is not guaranteed.
Values in a dictionary can be changed.

Every entry has a key and a value

Elements are
values

accessed using key's

Differ in syntax, looks bit complicated
when compare with Tuple or lists

Lists:

Lists are mutable sequences, typically used to store collections of homogeneous items. In
Python, lists are defined by enclosing comma-separated values within square brackets [.

my list = [1,

print(my list)

mixed list = [1,

print{mixed list)

Append vs. Concatenate

- The concatenate operator + uses two lists and
creates a bigger one

- Append is a method which adds an element to
the right end of a list — any type of data

List Built-in Functions

append(): Adds an element to the end of the list.

my list.append(c)

print(my list) # Output: [

extend () : Extends a list by appending elements from an
iterable.

another list = [7, 8, 9]
y list.extend(another list)

print(my _list) # Output

Insert(): Inserts an element at a specified
position.

my list.insert(s, @)

print({my_list) # Output

remove(): Removes the first occurrence of
a value from the list.

vy _list.remove(=)

rint{my_list) # Output

pop(): Removes and returns the last element from
the list, or removes an element at a specified
Index.

popped_element = my list.pop()

print(popped_element)
print{my list) # Output

index () : Returns the index of the first occurrence of a value in the list

index = my list.index(-)

print(index)

Split —returns a list

“lets try some splitting here”.split(“ <) => ['lets’,
'try’, 'some’, 'splitting’, 'here']

Tuples

1. Cannot be changed
Immutable
Ordered
Have different data types

Hashable

Comparable’

Count() and index() works

Sort(), reverse(), append() don’t work
as It cannot change.

© N O O A W

Sets

1. Unordered
2. Mutable

3. Unique elements
4. Cannot contain “lists” in set
5. Using “set()” can convert list to set

— I
m},-r_set - L2 3 3

print(my set)

my set.add(4)

print(my_ set)

my set.remove(=)

print(my set)

I I N
union () Contains all elements that are in set
AorinsetB

intersection & 0, Contains all elements that are in
_X both sets A and B
difference - Y. Contains all elements that are in A
s but not in B

Contains all elements that are either
* inset A butnot insetB or
» insetB butnotinsetA

symmetric_difference

>
&

Set A:
Set B: A

print(, seth)
print(, setB)

Union:

Intersection: {

TR R enase 1,)
[:.-r":i_r'lt{ , setA I SetE] 2Ly Symmetric Difference: {1,
print(, setA & setB)
print(, setA - setB)
print(, setA ~ setB)

Dictionary

1. Key-Value Pairs
2. Mutable

3. Unordered

4. Keys are Immutable

1. clear()

The clear() method removes all items from the
dictionary.

my dict = {

print(

my dict.clear()

print(

copy ()

The copy () method returns a shallow copy of the dictionary.

copy_dict = my dict.copy()

print(, copy_dict)

get (key[, dJ)

The get () method returns the value for xey. If xey does not
exist, it returns a (defaulting to none if not provided).

age = my dict.get(
print(, age)

address = my_dict.get(

print(, address)

items ()

The itens () method returns a new view of the dictionary's items as (key,
value) pairs.

ems as key-value pairs

items = my_dict.items()

print(, items)

The xeys () method returns a new view of the dictionary's keys.

y dict.keys()

print(, keys) # Output

update ()

The update () method updates the dictionary with the key/value pairs from another dictionary,
overwriting existing keys.

ating the dictionary
my dict.update({
print(, my dict) # Output: {'name

values ()

The values () method returns a new view of the dictionary's values.

values = my dict.values()

print(, values)

fromkeys (seq[, v])

The fromkeys () method creates a new dictionary with keys from seq and values set to v
(defaulting to none if not provided).

keys = [

default_value =
new dict = dict.fromkeys(keys, default value)

print(, new dict)

pop (key[, d])

The pop () method removes and returns the value associated with key. If xey is not found and 4
IS provided, it returns 4. If 4 is not provided and xey is not found, it raises keyError.

Removing and
age = my_dict.pop(
print(

print(

address = my_dict.pop(

print(
popitem()

The popitem () method removes and returns an arbitrary (key, value) pair from the dictionary. It
raises keyError If the dictionary is empty.

Remowvin

item = my dict.popitem()

print(, item)

print(

Chapter 11 (file Handling)

« OPENING FILE
« Assoclate an external file with a
program object
« READING/WRITE FILE
« Manipulate the file object
» Reading from or writing to the file
object
« CLOSING FILE
« Once done, close the file.

File Access Mode

Text File Binary File Description

Mode Mode
w wh Write only » |If file not exist, file is created.
= If file exists, python will delete existing data and overwrite the file.
r rb Read only = File must exist, otherwise getting I/0 error
a ab Append * File in write mode only, new data will be added to the end of

existing data.
= [f file not exists, file is created

w+t w+b or wb+ Write and read + Opens the file for both reading and writing.
« The text is overwritten and deleted from an existing file.
r+ b or rb+ Read and write + Opens the file for both reading and writing.
+ |f the file does not exist, an 1/0 error gets raised.
a+ at+b or ab+ Append and « Can read and write in the file.
read « If the file doesn't already exist, file is created

* New written text will be added at the end, following the previously
written data.

X Exclusive = Open the file for writing, but only if the file does not already exist.
creation mode » [f the file exists, an error is raised.

open (
content = f.read()

print(content)

name = open(**filename™)

opens the given file for reading, and returns a file object

name.read() - file's entire contents as a string
name.readline() - next line from file as a string

name.readlines() - file's contents as a list of lines

the lines from a file object can also be read using a for loop

Error Handling

1. Syntax Errors (Compile-time Errors):

Syntax errors occur when the syntax (grammar) of the code is incorrect.

print(

2. Runtime Errors (Exceptions):

Runtime errors, also known as exceptions, occur while a program is running if something
unexpected happens.

numerator =
denominator =
result = numerator / denominator

print(, result)

Traceback (most recent ca st):

File "example.py", line =, <
= numerator / denominator

ZeroDivisionError: division | Zero

3. Logical Errors:

Logical errors occur when the code executes without throwing any syntax or runtime errors,
but produces incorrect results due to a mistake in the algorithm or logic of the program.
These errors are often the most difficult to debug because they do not cause Python to
report an error.

ncorrect

numbers

total = sum(numbers)
average = total / len(numbers)

print(, average)

Average: 30

Incorrect Result

try, except Blocks:

numl =
num2 =
result = numl / num2 # [
print(, result)

ZeroDivisionError as e:

print(, e)

Try-finally Example

print{content)
FileNotFoundError as e:
print(, &) # Handle file not found error

IndentationError

EOFError

» Logging is a means of tracking events that happen when
some software runs.

« Logging module provides a set of functions for simple
logging and for following purposes

	While Loop
	Difference Between Compiling and Interpreting
	2. Variable Names Can Only Contain Alphanumeric Characters and Underscores
	3. Variable Names Cannot Be a Reserved Keyword
	4. Variable Names Should Be Descriptive
	Decision Structures in Python with Examples
	1. One Way Decision (if)
	2. Two-Way Decision (if else)
	3. Multiway Decision (if elif)
	Pass Statement
	Return Statement
	break Statement
	continue Statement

	Explanation of range(start, stop, step):
	Pass by Reference and Pass by Value:
	Fruitful (Return Values) and Void (Non-fruitful) Functions:
	String Formatting Methods:
	Lists:
	copy()
	get(key[, d])
	items()
	keys()
	update()
	values()
	fromkeys(seq[, v])
	pop(key[, d])
	popitem()
	1. Syntax Errors (Compile-time Errors):
	2. Runtime Errors (Exceptions):
	3. Logical Errors:
	try, except Blocks:

