
TOPIC 1 

 

What is Problem? 

- A Problem is a state of difficulty that need to be resolved  

 

What is Algorithm? 

- A set of precise steps that describe exactly the tasks to be performed and the order 
in which they are to be carried out. 

- Pseudocode , Flowcharts 

 

Steps to developing a Program 

• Define 

• Define the problem. 

• Outline 

• Outline the solution. 

• Develop 

• Develop the outline into an algorithm. 

• Test 

• Test the algorithm for correctness. 

• Code 

• Code the algorithm into a specific programming language. 

• Run 

• Run the program on the computer. 

• Document and maintain 

• Document and maintain the program. 

 

 



What is Pseudo Code? 

- It is English that has been formalized and abbreviated to look like the high-level 
computer languages. 

- START, END,IF,ELSEIF , PRINT , DISPLAY , SHOW , OUTPUT, PUT 
- Sample keyword for repetition:  
- FOR 
- WHILE / ENDWHILE 
- REPEAT / UNTIL 
- DO/WHILE/ENDWHILE 

Example: 

‘’’IF student_attendance_status is part_time THEN 

 add 1 to part_time_count 

ELSE 

 add 1 to full_time_count 

ENDIF “’’’ 

 

 

FLOWCHART 

• Flowchart is generally drawn from top to bottom 

• All boxes of flowchart must be connected with arrow. 

• All boxes of flowchart must be connected with arrow. 

• All boxes of flowchart must be connected with arrow. 

 

 

 

 

- TERMINAL (START OR END) 

 



 

                                                       -  INPUT/OUTPUT 

 

 

 

 

    -Process ( calculation) 
 
 
 
 

    -Decision (IF Statements) 

 

 

 

 

 
 
   -Predefined process  
 
 
    
   -On-page Connector 
 
 
 
 
 
 
   -FLOW (DIRECTION) 
 
 



TOPIC – 2 
 
Types of Operators 

 
 
 
 
 
 
 
 
 
 

 
Relational Operators 

 
 
 
 
 
 
 
 

 
Logical Operators 

 
 
 
 
 

 

 



Types of Selection  

1. Simple Selection (simple IF) 
2. Simple Selection with NULL FALSE  
3. Combine Selection (combined IF) 
4. Nested Selection (Linear and Non-Linear) 

 

Simple Selection  

- Simple selection uses a straightforward IF statement to make a decision based on a 

condition. 

 

 

Simple Selection with NULL FALSE  

- In some programming languages or contexts, you might check for null values 
explicitly to handle cases where data might be missing or undefined. 

 

 

Combine Selection (combined IF) 

- Combine selection uses logical operators to check multiple conditions in a single IF 

statement. 

 



Nested Selection (Linear and Non-Linear) 

Nested selection involves placing one IF statement inside another. This can be linear (one 
inside another) or non-linear (multiple branches). 

 

Linear Nested 

True

False

False

(Condition_2)

(Condition_3)
FalseTrue

True

(Condition_1)

Action_1

Action_2

Action_3 Action_4

 

 

- If one condition is not correct , will directly go to another 
condition. 

 

 

 

 

 

 



 

Non-linear Nested 

- There is other processes between the conditions 
selections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Repetition 

- For Loop  
- While Loop 
- Do While Loop ( Known as Post test loop ) 

 

2 Types of LOOP  

- Pre-test lopp 
- Post test loop ( Use in C, C#,Java) 

 

Repetition Structure 

• 1. Can be used to control execution of the loop (loop control 
variable) 

• 2.It will increment or decrement each time a loop repeats 

• 3.Must be initialized before entering loop 

 

 

 

 

 

 

 



For Loop 

- A for loop in Python is typically used when the number of iterations is known 
beforehand. 

- The for loop in Python is often used to iterate over a sequence 
(like a list, tuple, string, or range). 

- The loop control variable is automatically managed by the loop 
structure. 

 

 

While Loop 

- A while loop is used when the number of iterations is not known beforehand and 

depends on a condition. 

- The while loop in Python continues to execute as long as the condition is True. 

- The loop control variable must be explicitly managed (initialized, condition-

checked, and updated) by the programmer. 

 

 

 

 

 



TOPIC – 3 

 

What is Programming Language? 

- Is a set of rules that provides a way of telling a computer what 
operations to perform. 

- It provides a linguistic framework for describing computations 
- Is a notational system for describing computation in a 

machine-readable and human-readable form.  
- Is a tool for developing executable models for a class of 

problem domains. 

 

•  Source Code: The entire block of code from variable initialization to 

the if-else statement and the print functions. 

•  Syntax: The if-else statement syntax is correct because it includes a 

colon after the condition and proper indentation. 

•  Output: Depending on the values of a and b, the output will be either 

"The result is: 30" or "a is not less than b". 

•  Console: The text box (within the IDE or terminal) where the output 

"The result is: 30" will be printed. 

 



- Free 

- Portable 

- Indentation 

- Object-Oriented 

- Powerful 

 

- PYTHON is Interpreting Language. 

 

 

 

 



Difference Between Compiling and Interpreting 

 

Aspect Compiling Interpreting 

Translation Translates entire source code into 

machine code before execution. 

Translates and executes source 

code line by line. 

Output Generates an executable file 

(e.g., .exe). 

No intermediate file, directly 

executes source code. 

Execution 

Speed 

Generally faster, as machine code is 

executed directly by the processor. 

Generally slower, as translation 

happens during execution. 

Platform 

Dependency 

Platform-specific executables; may 

require recompilation for different 

platforms. 

Platform-independent; requires an 

interpreter on the target machine. 

Development 

Cycle 

Requires compilation step before 

execution; slower iteration during 

development. 

Direct execution; faster iteration 

and easier testing during 

development. 

Distribution Distribute executable files; source 

code can remain hidden. 

Source code is distributed and 

executed by the interpreter. 

Error Detection Errors are detected at compile time. Errors are detected at runtime. 

Examples C, C++, Rust Python, JavaScript, Ruby 

 

Comment in Python  

- Use “#” 

- ‘’’ 

 

 

 

 



TOPIC 4 (Implementing PYTHON) 

*** REMEMBER the DATA TYPES 

 

 

 

Variable Declaration Rules 

1. Variable Names Must Start with a Letter or an Underscore 

 

2. Variable Names Can Only Contain Alphanumeric Characters and 
Underscores 

 

 

 



3. Variable Names Cannot Be a Reserved Keyword 

 

 

4. Variable Names Should Be Descriptive 

 
 
 
 
 
 
 
 
 



Order Precedence Rules 

 

Boolean Value  

- YES OR NO 
- True or False 

 

 

Decision Structures in Python with Examples 

1. One Way Decision (if) 

Executes a block of code if the condition is true 

 

2. Two-Way Decision (if else) 

Executes one block of code if the condition is true and another block if the condition is false. 

 

 

 



3. Multiway Decision (if elif) 

Executes one of several blocks of code depending on multiple conditions. 

 

 

Pass Statement 

A placeholder statement that does nothing; used when a statement is required syntactically but no 

action is needed. 

 
 # No output because pass does nothing 

 
 
 
 



Return Statement 

Exits a function and optionally passes an expression back to the caller. 

 

 

break Statement 

The break statement is used to exit a loop prematurely. When break is encountered inside a 

loop, the loop is terminated, and control is transferred to the statement immediately following the 

loop. 

 

 

continue Statement 

The continue statement is used to skip the current iteration of a 

loop and proceed to the next iteration. When continue is 

encountered, the remaining code inside the loop is skipped, and 

the next iteration begins. 

 



Explanation of range(start, stop, step): 

start: The starting value of the sequence (inclusive). 

stop: The stopping value of the sequence (exclusive). 

step: The step value determines the increment (or decrement if negative). 

 

 

 

 

 

 

 

 

 



 

Using else Statement with While Loop – Example 

count = 0 

while count < 5: 

    print(count, " is less than 5") 

    count = count + 1 

else: 

    print(count, " is not less than 5") 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter – 7  

Functions 

- A function in Python is a block of reusable code that performs a specific task. 

Using “def” to create a function 

 

 

Arguments and Parameters: 

Parameter: A variable in a function definition. It is a placeholder for the value that 

will be passed to the function when it is called. 

Argument: The actual value or expression passed to a function when calling it. 

 

Pass by Reference and Pass by Value: 

Pass by reference: When you pass a mutable object (like a list or dictionary) to a function, 
the function can modify the object. 

 

 

 

 



Pass by value: When you pass immutable objects (like integers, strings, tuples) to a 
function, a copy of the object is passed. Changes inside the function do not affect the 
original object. 

 

 

Fruitful (Return Values) and Void (Non-fruitful) Functions: 

Fruitful Function: A function that returns a value using the return statement. 

 

 

Void Function (Non-fruitful): A function that performs an operation but does not return any 

value explicitly (implicitly returns None). 

 

 



 

***Python Built-in Functions to Remember 

•  print(): Outputs messages or variables to the console. 

•  len(): Returns the length (number of items) of an object like a string, list, or tuple. 

•  input(): Reads input from the user via the console. 

•  type(): Returns the type of an object (e.g., int, str, list). 

•  int(): Converts a string or number to an integer. 

•  float(): Converts a string or number to a floating-point number. 

•  str(): Converts an object into a string representation. 

•  list(): Creates a list from iterable objects like tuples or converts a string to a list. 

•  tuple(): Creates a tuple from iterable objects or converts a list to a tuple. 

•  dict(): Creates a dictionary or converts a sequence of key-value pairs into a dictionary. 

•  range(): Generates a sequence of numbers. 

•  sorted(): Returns a new sorted list from the elements of any iterable. 

•  sum(): Returns the sum of all elements in an iterable. 

•  max(): Returns the maximum element from an iterable or a series of arguments. 

•  min(): Returns the minimum element from an iterable or a series of arguments. 

•  abs(): Returns the absolute value of a number. 

•  all(): Returns True if all elements of an iterable are true (or if the iterable is empty). 

•  any(): Returns True if any element of an iterable is true. If the iterable is empty, it returns 

False. 

•  callable(): Checks if the object is callable (e.g., functions, methods). 



•  enumerate(): Returns an enumerate object that yields tuples containing a count (index) and 

the values obtained from iterating over a sequence. 

•  filter(): Constructs an iterator from elements of an iterable for which a function returns 

true. 

•  map(): Applies a function to all items in an input iterable. 

•  zip(): Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of 

the input iterables. 

•  chr(): Returns the string representing a character whose Unicode code point is the integer. 

•  ord(): Returns the Unicode code point for a given character. 

•  round(): Rounds a floating-point number to a specified number of decimals or to the nearest 

integer. 

•  dir(): Returns a list of attributes and methods of any object (without the __ methods). 

•  eval(): Evaluates a string containing a Python expression. 

•  globals(): Returns the dictionary representing the current global symbol table. 

•  locals(): Returns the dictionary representing the current local symbol table. 

append(): Adds an element to the end of a list. 

pop(): Removes and returns the last element from a list, or removes and returns the element at a 

specified index. 

insert(): Inserts an element at a specified position in a list. 

index(): Returns the index of the first occurrence of a value in a list. 



 



 

 



 

 



 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

Chapter (Stings Slicing) 

 

Indexing 

Strings in Python are indexed, meaning each character in the string has a position, starting from 0 

for the first character. Negative indices count from the end of the string. 

 

 

Slicing 

Slicing allows you to extract a substring (a portion of the string) from a string by specifying a 

range of indices. The syntax for slicing is string[start:end:step]. 

 

 

 

 

 

 

 



 

The in Operator: 

The in operator checks for membership, whether a value exists within an iterable (like 
strings, lists, tuples, etc.). 

 

 

*** Remember this functions() 

 

 

 

 



 

Strings cannot be modified; instead, create a new one. 

 

 

 

 

 



 

String Formatting Methods: 

String formatting in Python allows you to insert values into strings in a controlled manner. There 

are several ways to format strings, but here we focus on the format() method and f-strings 

(formatted string literals). 

 

Positional Arguments: 

 

 

Keyword Arguments 

 

 

F-strings Format 

 

 



Chapter – 9 (lists and tuples) 

 

 

 

 

 

 

 

 



Lists: 

Lists are mutable sequences, typically used to store collections of homogeneous items. In 

Python, lists are defined by enclosing comma-separated values within square brackets [ ]. 

 

 

Append vs. Concatenate 

- The concatenate operator + uses two lists and 

creates a bigger one 

- Append is a method which adds an element to 

the right end of a list – any type of data 

 

List Built-in Functions 

append(): Adds an element to the end of the list. 

 
 



extend(): Extends a list by appending elements from an 
iterable. 

 

 

insert(): Inserts an element at a specified 

position. 

 

 

remove(): Removes the first occurrence of 

a value from the list. 

 

 

 

 



pop(): Removes and returns the last element from 

the list, or removes an element at a specified 

index. 

 

 

 

index(): Returns the index of the first occurrence of a value in the list 

  

 

Split – returns a list 

 “lets try some splitting here”.split(“ “) =>   ['lets', 

'try', 'some', 'splitting', 'here']  



Tuples  

1. Cannot be changed 

2. Immutable  

3. Ordered 

4. Have different data types 

5. Hashable  

6. Comparable’ 

7. Count() and index() works 

8. Sort(), reverse(), append() don’t work 

as it cannot change. 

 

 

 

 

 



 

Sets 

1. Unordered 

2. Mutable 

3. Unique elements 

4. Cannot contain “lists” in set 

5. Using “set()” can convert list to set 

 

 



 

 

 

 

 

 

 

 

 

 

 

 



 

Dictionary  

1. Key-Value Pairs 

2. Mutable 

3. Unordered 

4. Keys are immutable 

 

1. clear() 

The clear() method removes all items from the 

dictionary. 

 

 

 

 



copy() 

The copy() method returns a shallow copy of the dictionary. 

 

get(key[, d]) 

The get() method returns the value for key. If key does not 

exist, it returns d (defaulting to None if not provided). 

 
items() 

The items() method returns a new view of the dictionary's items as (key, 

value) pairs. 

 

 

 



keys() 

The keys() method returns a new view of the dictionary's keys. 

 

 
update() 

The update() method updates the dictionary with the key/value pairs from another dictionary, 

overwriting existing keys. 

 

 
values() 

The values() method returns a new view of the dictionary's values. 

 
 

 

 

 

 

 



 

fromkeys(seq[, v]) 

The fromkeys() method creates a new dictionary with keys from seq and values set to v 

(defaulting to None if not provided). 

 
pop(key[, d]) 

The pop() method removes and returns the value associated with key. If key is not found and d 

is provided, it returns d. If d is not provided and key is not found, it raises KeyError. 

 
popitem() 

The popitem() method removes and returns an arbitrary (key, value) pair from the dictionary. It 

raises KeyError if the dictionary is empty. 

 

 



Chapter 11 (file Handling) 

• OPENING FILE 

• Associate an external file with a 

program object 

• READING/WRITE FILE 

• Manipulate the file object 

• Reading from or writing to the file 

object 

• CLOSING FILE 

• Once done, close the file. 

 

 

 

 

 

 



 

File Access Mode 

 

 

 
name = open("filename") 

opens the given file for reading, and returns a file object 

 

 name.read() - file's entire contents as a string 

 name.readline() - next line from file as a string  

 name.readlines() - file's contents as a list of lines 



the lines from a file object can also be read using a for loop 

 

 

Error Handling 

1. Syntax Errors (Compile-time Errors): 

Syntax errors occur when the syntax (grammar) of the code is incorrect.  

 

 

2. Runtime Errors (Exceptions): 

Runtime errors, also known as exceptions, occur while a program is running if something 
unexpected happens. 

 

 

 

 



 

3. Logical Errors: 

Logical errors occur when the code executes without throwing any syntax or runtime errors, 
but produces incorrect results due to a mistake in the algorithm or logic of the program. 
These errors are often the most difficult to debug because they do not cause Python to 
report an error. 

 

 

 Incorrect Result 

 

 

try, except Blocks: 

 

 



 

Try-finally Example 

 

 

 

 



• Logging is a means of tracking events that happen when 

some software runs. 

• Logging module provides a set of functions for simple 

logging and for following purposes  

 


	While Loop
	Difference Between Compiling and Interpreting
	2. Variable Names Can Only Contain Alphanumeric Characters and Underscores
	3. Variable Names Cannot Be a Reserved Keyword
	4. Variable Names Should Be Descriptive
	Decision Structures in Python with Examples
	1. One Way Decision (if)
	2. Two-Way Decision (if else)
	3. Multiway Decision (if elif)
	Pass Statement
	Return Statement
	break Statement
	continue Statement

	Explanation of range(start, stop, step):
	Pass by Reference and Pass by Value:
	Fruitful (Return Values) and Void (Non-fruitful) Functions:
	String Formatting Methods:
	Lists:
	copy()
	get(key[, d])
	items()
	keys()
	update()
	values()
	fromkeys(seq[, v])
	pop(key[, d])
	popitem()
	1. Syntax Errors (Compile-time Errors):
	2. Runtime Errors (Exceptions):
	3. Logical Errors:
	try, except Blocks:

